Exercise induces favorable metabolic changes in white adipose tissue preventing high-fat diet obesity

运动可引起白色脂肪组织的有利代谢变化,从而预防高脂饮食引起的肥胖

阅读:6
作者:Babu R Maharjan, Sergio F Martinez-Huenchullan, Susan V Mclennan, Stephen M Twigg, Paul F Williams

Abstract

Diet and/or exercise are cost effective interventions to treat obesity. However, it is unclear if the type of exercise undertaken can prevent the onset of obesity and if it can act through different effects on fat depots. In this study we did not allow obesity to develop so we commenced the high-fat diet (HFD) and exercise programs concurrently and investigated the effect of endurance exercise (END) and high-intensity interval training (HIIT) on changes in cellular adipogenesis, thermogenesis, fibrosis, and inflammatory markers in three different fat depots, on a HFD and a chow diet. This was to assess the effectiveness of exercise to prevent the onset of obesity-induced changes. Mice fed with chow or HFD (45% kcal fat) were trained and performed either END or HIIT for 10 weeks (3 x 40 min sessions/week). In HFD mice, both exercise programs significantly prevented the increase in body weight (END: 17%, HIIT: 20%), total body fat mass (END: 46%, HIIT: 50%), increased lean mass as a proportion of body weight (Lean mass/BW) by 14%, and improved insulin sensitivity by 22%. Further evidence of the preventative effect of exercise was seen significantly decreased markers for adipogenesis, inflammation, and extracellular matrix accumulation in both subcutaneous adipose tissue (SAT) and epididymal adipose tissue (EPI). In chow, no such marked effects were seen with both the exercise programs on all the three fat depots. This study establishes the beneficial effect of both HIIT and END exercise in preventing metabolic deterioration, collagen deposition, and inflammatory responses in fat depots, resulting in an improved whole body insulin resistance in HFD mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。