The spliceosome inhibitors isoginkgetin and pladienolide B induce ATF3-dependent cell death

剪接体抑制剂异银杏黄素和普拉二烯内酯 B 诱导 ATF3 依赖性细胞死亡

阅读:6
作者:Erin J Vanzyl, Hadil Sayed, Alex B Blackmore, Kayleigh R C Rick, Pasan Fernando, Bruce C McKay

Abstract

The spliceosome assembles on pre-mRNA in a stepwise manner through five successive pre-spliceosome complexes. The spliceosome functions to remove introns from pre-mRNAs to generate mature mRNAs that encode functional proteins. Many small molecule inhibitors of the spliceosome have been identified and they are cytotoxic. However, little is known about genetic determinants of cell sensitivity. Activating transcription factor 3 (ATF3) is a transcription factor that can stimulate apoptotic cell death in response to a variety of cellular stresses. Here, we used a genetic approach to determine if ATF3 was important in determining the sensitivity of mouse embryonic fibroblasts (MEFs) to two splicing inhibitors: pladienolide B (PB) and isoginkgetin (IGG), that target different pre-spliceosome complexes. Both compounds led to increased ATF3 expression and apoptosis in control MEFs while ATF3 null cells were significantly protected from the cytotoxic effects of these drugs. Similarly, ATF3 was induced in response to IGG and PB in the two human tumour cell lines tested while knockdown of ATF3 protected cells from both drugs. Taken together, ATF3 appears to contribute to the cytotoxicity elicited by these spliceosome inhibitors in both murine and human cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。