NMNAT1 Is Essential for Human iPS Cell Differentiation to the Retinal Lineage

NMNAT1 对人类 iPS 细胞分化为视网膜谱系至关重要

阅读:5
作者:Hiroshi Kuribayashi, Toshiro Iwagawa, Akira Murakami, Takeshi Kawamura, Yutaka Suzuki, Sumiko Watanabe

Conclusions

These results indicate that NMNAT1 was dispensable for neural lineage differentiation but essential for the commitment of retinal fate differentiation in hiPSCs. The NMNAT1-NAD-PARP1 axis may play a critical role in the appropriate development of human retinal lineage differentiation.

Methods

We used human induced pluripotent stem cells (hiPSCs) and established NMNAT1-knockout (KO) hiPSCs using CRISPR/cas9 technology to reveal the roles of NMNAT1 in human retinal development.

Purpose

The gene encoding nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1), a nicotinamide adenine dinucleotide synthetase localized in the cell nucleus, is a causative factor in Leber's congenital amaurosis, which is the earliest onset type of inherited retinal degeneration. We sought to investigate the roles of NMNAT1 in early retinal development.

Results

NMNAT1 was not essential for the survival and proliferation of immature hiPSCs; therefore, we subjected NMNAT1-KO hiPSCs to retinal organoid (RO) differentiation culture. The expression levels of immature hiPSC-specific genes decreased in a similar manner after organoid culture initiation up to 2 weeks in the control and NMNAT1-KO. Neuroectoderm-specific genes were induced in the control and NMNAT1-KO organoids within a few days after starting the organoid culture; PAX6 and TUBB3 were higher in NMNAT1-KO organoids up to 7 days than in the control organoids. However, the induction of genes involving retinal early development, such as RAX, which was induced at around day 10 in this culture, was considerably reduced in NMNAT1-KO organoids. Morphological examination also showed failure of retinal primordial structure formation, which became visible at around 2 weeks of the control culture, in the NMNAT1-KO organoids. Decreased intracellular NAD levels and poly(ADP-ribosyl)ation were observed in NMNAT1-KO organoids at 7 to 10 days of the culture. Mass spectrometry analysis of inhibited proteins in the poly(ADP-ribosyl)ation pathway identified poly(ADP-ribosyl)ation of poly(ADP-ribose) polymerase 1 (PARP1) as a major protein. Conclusions: These results indicate that NMNAT1 was dispensable for neural lineage differentiation but essential for the commitment of retinal fate differentiation in hiPSCs. The NMNAT1-NAD-PARP1 axis may play a critical role in the appropriate development of human retinal lineage differentiation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。