Electrophoretic Deposition of Quantum Dots and Characterisation of Composites

量子点的电泳沉积和复合材料的表征

阅读:5
作者:Finn Purcell-Milton, Antton Curutchet, Yurii Gun'ko

Abstract

Electrophoretic deposition (EPD) is an emerging technique in nanomaterial-based device fabrication. Here, we report an in-depth study of this approach as a means to deposit colloidal quantum dots (CQDs), in a range of solvents. For the first time, we report the significant improvement of EPD performance via the use of dichloromethane (DCM) for deposition of CQDs, producing a corresponding CQD-TiO2 composite with a near 10-fold increase in quantum dot loading relative to more commonly used solvents such as chloroform or toluene. We propose this effect is due to the higher dielectric constant of the solvent relative to more commonly used and therefore the stronger effect of EPD in this medium, though there remains the possibility that changes in zeta potential may also play an important role. In addition, this solvent choice enables the true universality of QD EPD to be demonstrated, via the sensitization of porous TiO2 electrodes with a range of ligand capped CdSe QDs and a range of group II-VI CQDs including CdS, CdSe/CdS, CdS/CdSe and CdTe/CdSe, and group IV-VI PbS QDs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。