Graphene Oxide/Polyethylenimine Aerogels for the Removal of Hg(II) from Water

氧化石墨烯/聚乙烯亚胺气凝胶用于去除水中的 Hg(II)

阅读:5
作者:Alejandro Borrás, Bruno Henriques, Gil Gonçalves, Julio Fraile, Eduarda Pereira, Ana M López-Periago, Concepción Domingo

Abstract

This article reports the synthesis of an aerogel involving reduced graphene oxide (rGO) and polyethylenimine (PEI), and describes its potential application as an effective sorbent to treat Hg(II) contaminated water. The rGO/PEI sorbent was synthetized using a supercritical CO2 method. N2 physisorption, electron microscopy, and elemental mapping were applied to visualize the meso/macroporous morphology formed by the supercritical drying. The advantages of the synthetized materials are highlighted with respect to the larger exposed GO surface for the PEI grafting of aerogels vs. cryogels, homogeneous distribution of the nitrogenated amino groups in the former and, finally, high Hg(II) sorption capacities. Sorption tests were performed starting from water solutions involving traces of Hg(II). Even though, the designed sorbent was able to eliminate almost all of the metal from the water phase, attaining in very short periods of time residual Hg(II) values as low as 3.5 µg L-1, which is close to the legal limits of drinking water of 1-2 µg L-1. rGO/PEI exhibited a remarkably high value for the maximum sorption capacity of Hg(II), in the order of 219 mg g-1. All of these factors indicate that the designed rGO/PEI aerogel can be considered as a promising candidate to treat Hg(II) contaminated wastewater.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。