Nanocellulose-Reinforced Polyurethane for Waterborne Wood Coating

用于水性木器涂料的纳米纤维素增强聚氨酯

阅读:5
作者:Linglong Kong, Dandan Xu, Zaixin He, Fengqiang Wang, Shihan Gui, Jilong Fan, Xiya Pan, Xiaohan Dai, Xiaoying Dong, Baoxuan Liu, Yongfeng Li

Abstract

With the enhancement of people's environmental awareness, waterborne polyurethane (PU) paint-with its advantages of low release of volatile organic compounds (VOCs), low temperature flexibility, acid and alkali resistance, excellent solvent resistance and superior weather resistance-has made its application for wood furniture favored by the industry. However, due to its lower solid content and weak intermolecular force, the mechanical properties of waterborne PU paint are normally less than those of the traditional solvent-based polyurethane paint, which has become the key bottleneck restricting its wide applications. To this end, this study explores nanocellulose derived from biomass resources by the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidation method to reinforce and thus improve the mechanical properties of waterborne PU paint. Two methods of adding nanocellulose to waterborne PU-chemical addition and physical blending-are explored. Results show that, compared to the physical blending method, the chemical grafting method at 0.1 wt% nanocellulose addition results in the maximum improvement of the comprehensive properties of the PU coating. With this method, the tensile strength, elongation at break, hardness and abrasion resistance of the waterborne PU paint increase by up to 58.7%, ~55%, 6.9% and 3.45%, respectively, compared to the control PU; while the glossiness and surface drying time were hardly affected. Such exploration provides an effective way for wide applications of water PU in the wood industry and nanocellulose in waterborne wood coating.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。