Improved calibration of electrochemical aptamer-based sensors

改进基于电化学适体的传感器的校准

阅读:4
作者:Alex M Downs, Julian Gerson, Kaylyn K Leung, Kevin M Honeywell, Tod Kippin, Kevin W Plaxco

Abstract

Electrochemical aptamer-based (EAB) sensors support the real-time, high frequency measurement of pharmaceuticals and metabolites in-situ in the living body, rendering them a potentially powerful technology for both research and clinical applications. Here we explore quantification using EAB sensors, examining the impact of media selection and temperature on measurement performance. Using freshly-collected, undiluted whole blood at body temperature as both our calibration and measurement conditions, we demonstrate accuracy of better than ± 10% for the measurement of our test bed drug, vancomycin. Comparing titrations collected at room and body temperature, we find that matching the temperature of calibration curve collection to the temperature used during measurements improves quantification by reducing differences in sensor gain and binding curve midpoint. We likewise find that, because blood age impacts the sensor response, calibrating in freshly collected blood can improve quantification. Finally, we demonstrate the use of non-blood proxy media to achieve calibration without the need to collect fresh whole blood.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。