Complex I subunit gene therapy with NDUFA6 ameliorates neurodegeneration in EAE

利用 NDUFA6 进行复合物 I 亚基基因治疗可改善 EAE 中的神经退行性病变

阅读:11
作者:Venu Talla, Rajeshwari Koilkonda, Vittorio Porciatti, Vince Chiodo, Sanford L Boye, William W Hauswirth, John Guy

Conclusions

NDUFA6 gene therapy provided long-term suppression of neurodegeneration in the EAE animal model suggesting that it may also ameliorate the mitochondrial dysfunction associated with permanent disability in optic neuritis and MS patients.

Methods

Mice sensitized for EAE were rescued by intravitreal injection of adeno-associated viral vector serotype 2 with the complex I subunit gene scAAV-NDUFA6Flag. Controls were injected with a mitochondrially targeted red fluorescent protein (scAAV-COX8-cherry). Another group received scAAV-COX8-cherry, but was not sensitized for EAE. Serial pattern electroretinograms (PERGs) and optical coherent tomography (OCT) evaluated visual function and structure of the retina at 1, 3, and 6 months post injection (MPI). Treated mice were killed 6 MPI for histopathology. Immunodetection of cleaved caspase 3 gauged apoptosis. Complex I activity was assessed spectrophotometrically. Expression of NDUFA6Flag in the retina and optic nerve were evaluated between 1 week to 1 month post injection by RT-PCR, immunofluorescence and immunoblotting.

Purpose

To address the permanent disability induced by mitochondrial dysfunction in experimental autoimmune encephalomyelitis (EAE).

Results

Reverse transcription-PCR and immunoblotting confirmed NDUFA6Flag overexpression with immunoprecipitation and blue native PAGE showing integration into murine complex I. Overexpression of NDUFA6Flag in the visual system of EAE mice rescued retinal complex I activity completely, axonal loss by 73%, and retinal ganglion cell (RGC) loss by 88%, RGC apoptosis by 66%, and restored the 33% loss of complex I activity in EAE to normal levels; thereby, preventing loss of vision indicated by the 43% reduction in the PERG amplitudes of EAE mice. Conclusions: NDUFA6 gene therapy provided long-term suppression of neurodegeneration in the EAE animal model suggesting that it may also ameliorate the mitochondrial dysfunction associated with permanent disability in optic neuritis and MS patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。