Taxonomic and functional dynamics during chytrid epidemics in an aquatic ecosystem

水生生态系统壶菌流行期间的分类和功能动态

阅读:7
作者:Luen-Luen Li, Pilar Delgado-Viscogliosi, Mélanie Gerphagnon, Eric Viscogliosi, Urania Christaki, Télesphore Sime-Ngando, Sébastien Monchy

Abstract

Fungal parasitism is common in plankton communities and plays a crucial role in the ecosystem by balancing nutrient cycling in the food web. Previous studies of aquatic ecosystems revealed that zoosporic chytrid epidemics represent an important driving factor in phytoplankton seasonal successions. In this study, host-parasite dynamics in Lake Pavin (France) were investigated during the spring diatom bloom while following chytrid epidemics using next generation sequencing (NGS). Metabarcoding analyses were applied to study changes in the eukaryotic microbial community throughout diatom bloom-chytrid epidemics. Relative read abundances of metabarcoding data revealed potential "beneficiaries" and "victims" during the studied period. Subsequently, metatranscriptomic analyses on samples before and during the chytrid epidemic unveiled the active part of the community and functional/metabolic dynamics in association with the progress of chytrid infection. Diatom functions involving lipases, transporters, histones, vacuolar systems, the proteasome, proteases and DNA/RNA polymerases were more abundant during the diatom bloom. Chytrid functions related to a parasitic lifestyle including invasion, colonization and stress tolerance were up-regulated during the chytrid epidemic. In addition, functions related to the degradation/metabolism of proteins, lipids and chitin were in higher proportion in the community during the epidemic event. Results of NGS and bioinformatics analyses offered a panorama of dynamic biodiversity and biological functioning of the community.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。