Adenovirus-mediated gene transfer of fibromodulin inhibits neointimal hyperplasia in an organ culture model of human saphenous vein graft disease

腺病毒介导的纤维调节蛋白基因转移可抑制人类隐静脉移植疾病器官培养模型中的内膜增生

阅读:7
作者:P Ranjzad, H K Salem, P A Kingston

Abstract

Poor long-term graft patency remains a major limitation of coronary artery bypass grafting using saphenous vein aortocoronary grafts. Neointimal hyperplasia (NIH) represents the principal mechanism of graft failure; a substantial body of evidence implicates transforming growth factor-beta1 (TGF-beta1) in the pathogenesis of NIH. The small leucine-rich proteoglycans decorin and fibromodulin possess TGF-beta-antagonist activity to differing extents and with differing avidities for the isoforms of TGF-beta. We compared their ability to inhibit NIH in an ex vivo model of human saphenous vein organ culture following adenovirus-mediated gene transfer. Surgically prepared human saphenous vein segments received adenovirus expressing fibromodulin (Ad5-Fmod), decorin (Ad5-Dcn), beta-galactosidase (Ad5-lacZ) or vehicle-only. Computerized morphometry 14 days after infection revealed significantly reduced neointimal area, neointimal thickness and intima/media ratio in Ad5-Fmod- and Ad5-Dcn-infected veins. Each parameter was significantly smaller in Ad5-Fmod- than in Ad5-Dcn-exposed segments. Fibrillar collagen content and levels of biologically active TGF-beta were lower in vessels receiving Ad5-Fmod or Ad5-Dcn than in those receiving Ad5-lacZ or vehicle-only. Fibromodulin is a more potent inhibitor of NIH in cultured human saphenous vein than decorin and offers potential therapeutic benefits in saphenous vein graft failure (and possibly in other forms of accelerated atherosclerosis) by reduction of associated neointima formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。