Conclusions
Cholesterol accumulation promotes cellular senescence in photoreceptors. Eliminating senescent photoreceptors improves visual function in a model of retinal neurodegeneration, and senotherapy offers a novel therapeutic avenue for further investigation.
Methods
Retinas from rod-specific ATP binding cassette subfamily A member 1 (Abca1) and G member 1 (Abcg1) (Abca1/g1-rod/-rod) knockout mice fed with a high-fat diet were analyzed for the signs of cellular senescence. Real-time quantitative PCR and immunofluorescence were used to characterize the senescence profile of the retina and cholesterol-treated photoreceptor cell line (661W). Inducible elimination of p16(Ink4a)-positive senescent cells (INK-ATTAC) mice or the administration of senolytic drugs (dasatinib and quercetin: D&Q) were used to examine the impact of senolytics on AMD-like phenotypes in Abca1/g1-rod/-rod retina.
Purpose
Dysregulated cholesterol metabolism is critical in the pathogenesis of AMD. Cellular senescence contributes to the development of numerous age-associated diseases. In this study, we investigated the link between cholesterol burden and the cellular senescence of photoreceptors.
Results
Increased accumulation of senescent cells as measured by markers of cellular senescence was found in Abca1/g1-rod/-rod retina. Exogenous cholesterol also induced cellular senescence in 661W cells. Selective elimination of senescent cells in Abca1/g1-rod/-rod;INK-ATTAC mice or by administration of D&Q improved visual function, lipid accumulation in retinal pigment epithelium, and Bruch's membrane thickening. Conclusions: Cholesterol accumulation promotes cellular senescence in photoreceptors. Eliminating senescent photoreceptors improves visual function in a model of retinal neurodegeneration, and senotherapy offers a novel therapeutic avenue for further investigation.
