Nerve growth factor promotes endothelial progenitor cell-mediated angiogenic responses

神经生长因子促进内皮祖细胞介导的血管生成反应

阅读:5
作者:Chandrakala S Jadhao, Ashay D Bhatwadekar, Youde Jiang, Michael E Boulton, Jena J Steinle, Maria B Grant

Conclusions

Our in vitro results suggest that NGF released from ischemic nerves in vivo may contribute to the "angiogenic switch" by stimulating the angiogenic behavior of CD34⁺ cells while minimally affecting resident retinal endothelial cells.

Methods

Human CD34⁺ cells and human retinal endothelial cells (HRECs) were used to examine the effect of NGF on key steps associated with neovascularization. CD34⁺ cells and HRECs were stimulated with NGF (1 to 4 pM) for 24, 48, and 72 hours. Cell migration was measured using a modified Boyden chamber assay. Expression of the receptor for the cytokine stromal derived growth factor 1 (SDF-1), CXCR-4, was assessed by flow cytometry. In vitro angiogenesis was tested using a three-dimensional (3D) extracellular matrix with HRECs/CD34⁺ cell cocultures. NGF receptor activation was assessed by western analysis.

Purpose

In response to ischemia, retinal neuronal cells express nerve growth factor (NGF), which can be proangiogenic. Endothelial progenitor cells (EPCs) can participate with the resident vasculature to promote angiogenesis. We postulated that NGF may stimulate CD34⁺ EPCs to convert to an angiogenic phenotype.

Results

NGF promoted proliferation of CD34⁺ cells but not HRECs. Pretreatment of CD34⁺ cells with NGF increased CXCR-4 expression in CD34⁺ cells, resulting in enhanced migration to SDF-1 (P < 0.0001). The enhanced tubule-forming effect of NGF in HRECs was further potentiated by coculture with NGF-pretreated CD34⁺ cells (P < 0.01). The beneficial effect of NGF was blocked (P < 0.0001) by the ERK inhibitor PD98059. In both CD34⁺ and HRECs, NGF increased phosphorylation of neurotrophic tyrosine kinase receptor type 1 (TrkA) receptor by ERK1 activation (P < 0.01). Conclusions: Our in vitro results suggest that NGF released from ischemic nerves in vivo may contribute to the "angiogenic switch" by stimulating the angiogenic behavior of CD34⁺ cells while minimally affecting resident retinal endothelial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。