Atg5-Mediated Lipophagy Induces Ferroptosis in Corneal Epithelial Cells in Dry Eye Disease

Atg5 介导的脂质自噬诱导干眼症角膜上皮细胞铁死亡

阅读:5
作者:Xin Zuo, Hao Zeng, Xue Yang, Dalian He, Bowen Wang, Jin Yuan

Conclusions

Our findings highlight the pivotal role of Atg5-mediated lipophagy in driving ferroptosis in corneal epithelial cells in DED, proposing Atg5 as a promising therapeutic target for mitigating ferroptosis-induced cell damage and inflammation in DED.

Methods

DED models were established in C57BL/6 mice via scopolamine injection and in human corneal epithelial cell line (HCEC) using hyperosmotic medium. Lipidomic and transcriptomic analysis were conducted to assess lipid metabolism and regulatory pathways. Atg5 expression was manipulated in vivo using cholesterol-modified small interfering RNA. Lipid droplets (LDs) and lysosomes were labeled with BODIPY 493/503 and Lysotracker Red DND-99, respectively. Western blot, immunofluorescence (IF) staining, co-immunoprecipitation (CO-IP), transmission electron microscopy and microplate reader were used to explore protein expressions and interactions, cellular structures, and free fatty acid (FFA) content.

Purpose

Ferroptosis occurred in corneal epithelial cells has been implicated in the inflammation in dry eye disease (DED). Given the proposed link between ferroptosis and autophagy, this study aims to investigate the role of autophagy in driving ferroptosis in corneal epithelial cell and enrich the pathogenesis underlying DED.

Results

Our results revealed that autophagy was activated in DED, as evidenced by lipidomic and transcriptomic analyses. Enhanced lipophagy was observed in HCECs exposed to hyperosmolarity, manifested by lysosome-LD co-localization and autophagic vacuoles containing LDs. Upregulation of Atg5 promoted lipophagy, leading to elevated cellular FFA levels, lipid peroxidation, and expression of ferroptosis markers. Interaction between Atg5 and perilipin3 was confirmed through CO-IP and IF. In the DED mouse model, Atg5 inhibition effectively ameliorated corneal damage, suppressed ferroptosis and ocular surface inflammation. Conclusions: Our findings highlight the pivotal role of Atg5-mediated lipophagy in driving ferroptosis in corneal epithelial cells in DED, proposing Atg5 as a promising therapeutic target for mitigating ferroptosis-induced cell damage and inflammation in DED.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。