Fas ligand-Fas signaling participates in light-induced apoptotic death in photoreceptor cells

Fas 配体-Fas 信号参与光诱导的光感受器细胞凋亡

阅读:7
作者:Qing Chang, Marcus E Peter, Michael A Grassi

Conclusions

Fas has a pro-apoptotic role in photoreceptors. Under light stress, soluble and membrane-bound FasL can bind to Fas, inducing apoptosis via a paracrine mechanism. Although blocking Fas signaling inhibits apoptosis, it does not improve the overall photoreceptor survival due to a compensatory activation of necroptosis. Hence, prevention of photoreceptor loss from retinal photo-oxidative stress should target Fas and RIP1.

Methods

Postmortem human eyes and mouse-derived photoreceptor cells (661W) were examined for Fas expression by in situ hybridization and immunofluorescence. 661W cells were treated with FasL or Fas agonistic antibody, or exposed to light with/without pharmacological manipulation of Fas signaling, followed by apoptosis detection by TUNEL, immunofluorescence and fluorescence activated cell scanning (FACS). Fractionated cellular extracts were used to detect protein expression or protein phosphorylation after immunoprecipitation by Western blot.

Purpose

We investigated the function of Fas in photoreceptors.

Results

Fas was expressed in the photoreceptor layer of human retina. Fas and a cleaved form of FasL were found on the cell surface of 661W cells. Treatment with FasL or Fas agonistic antibody induced apoptosis in 661W cells. Blocking the activity of FasL or administration of caspase-8 inhibitor z-IETD inhibited light-induced apoptosis. However, it simultaneously caused induction of necroptosis, which could be blocked by the receptor-interacting protein 1 (RIP1) inhibitor, necrostatin-1. Light exposure in the presence of z-IETD caused hyper-phosphorylation of RIP1. Light exposure did not elevate the expression of Fas, FasL, or the Fas-associated death domain adaptor protein (FADD). Cells or conditioned medium after light exposure induced apoptosis in dark-adapted cells, which could be attenuated by blockade of Fas. Conclusions: Fas has a pro-apoptotic role in photoreceptors. Under light stress, soluble and membrane-bound FasL can bind to Fas, inducing apoptosis via a paracrine mechanism. Although blocking Fas signaling inhibits apoptosis, it does not improve the overall photoreceptor survival due to a compensatory activation of necroptosis. Hence, prevention of photoreceptor loss from retinal photo-oxidative stress should target Fas and RIP1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。