Modeling Neurodevelopmental Disorders and Epilepsy Caused by Loss of Function of kif2a in Zebrafish

斑马鱼中 kif2a 功能丧失引起的神经发育障碍和癫痫的建模

阅读:5
作者:Michèle Partoens, Ann-Sofie De Meulemeester, Hoi-Khoanh Giong, Duc-Hung Pham, Jeong-Soo Lee, Peter A de Witte, Aleksandra Siekierska

Abstract

In recent years there has been extensive research on malformations of cortical development (MCDs) that result in clinical features like developmental delay, intellectual disability, and drug-resistant epilepsy (DRE). Various studies highlighted the contribution of microtubule-associated genes (including tubulin and kinesin encoding genes) in MCD development. It has been reported that de novo mutations in KIF2A, a member of the kinesin-13 family, are linked to brain malformations and DRE. Although it is known that KIF2A functions by regulating microtubule depolymerization via an ATP-driven process, in vivo implications of KIF2A loss of function remain partly unclear. Here, we present a novel kif2a knock-out zebrafish model, showing hypoactivity, habituation deficits, pentylenetetrazole-induced seizure susceptibility and microcephaly, as well as neuronal cell proliferation defects and increased apoptosis. Interestingly, kif2a-/- larvae survived until adulthood and were fertile. Notably, our kif2a zebrafish knock-out model demonstrated many phenotypic similarities to KIF2A mouse models. This study provides valuable insights into the functional importance of kif2a in zebrafish and phenotypical hallmarks related to KIF2A mutations. Ultimately, this model could be used in a future search for more effective therapies that alleviate the clinical symptoms typically associated with MCDs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。