Osteo-inductive effect of piezoelectric stimulation from the poly(l-lactic acid) scaffolds

聚乳酸支架的压电刺激骨诱导效应

阅读:8
作者:Ritopa Das, Duong Le, Ho-Man Kan, Thinh T Le, Jinyoung Park, Thanh D Nguyen, Kevin W-H Lo

Abstract

Piezoelectric biomaterials can generate piezoelectrical charges in response to mechanical activation. These generated charges can directly stimulate bone regeneration by triggering signaling pathway that is important for regulating osteogenesis of cells seeded on the materials. On the other hand, mechanical forces applied to the biomaterials play an important role in bone regeneration through the process called mechanotransduction. While mechanical force and electrical charges are both important contributing factors to bone tissue regeneration, they operate through different underlying mechanisms. The utilizations of piezoelectric biomaterials have been explored to serve as self-charged scaffolds which can promote stem cell differentiation and the formation of functional bone tissues. However, it is still not clear how mechanical activation and electrical charge act together on such a scaffold and which factors play more important role in the piezoelectric stimulation to induce osteogenesis. In our study, we found Poly(l-lactic acid) (PLLA)-based piezoelectric scaffolds with higher piezoelectric charges had a more pronounced osteoinductive effect than those with lower charges. This provided a new mechanistic insight that the observed osteoinductive effect of the piezoelectric PLLA scaffolds is likely due to the piezoelectric stimulation they provide, rather than mechanical stimulation alone. Our findings provide a crucial guide for the optimization of piezoelectric material design and usage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。