Background
The causes of dural arteriovenous fistula have not been clearly defined. The
Conclusions
The results of the experiments in our rabbit model indicate that high intracranial venous pressure is a key for dural arteriovenous fistula formation. Cerebral ischemia caused by lack of cerebral perfusion pressure plays a key role in the process that leads from high intracranial venous pressure to increased hypoxia inducible factor-1α expression and then increased vascular endothelial growth factor expression.
Results
By using rabbit model, dural arteriovenous fistula formation induced by high intracranial venous pressure could be produced by end-to-end and end-to-side anastomosis of the right side common carotid artery with the posterior facial vein plus ligation of the contralateral external jugular vein. As compared the post arteriovenous fistula formation among 1 week, 2 weeks, 3 weeks, and 90 days, the expression level of vascular endothelial growth factor in the 1- and 2-weeks groups was significantly higher compared with the control group, 3 weeks and 90 days groups (p ≤ 0.002). There was significantly higher hypoxia inducible factor-1α expression in the one week group compared with the control, 2 weeks, 3 weeks, and 90 days groups (p ≤ 0.002). The results of Western blotting showed that vascular endothelial growth factor expression level was highest in the 1 week group. The expression level of vascular endothelial growth factor was significantly different between all groups. Conclusions: The results of the experiments in our rabbit model indicate that high intracranial venous pressure is a key for dural arteriovenous fistula formation. Cerebral ischemia caused by lack of cerebral perfusion pressure plays a key role in the process that leads from high intracranial venous pressure to increased hypoxia inducible factor-1α expression and then increased vascular endothelial growth factor expression.
