The vitamin D receptor is involved in the regulation of human breast cancer cell growth via a ligand-independent function in cytoplasm

维生素 D 受体通过细胞质中不依赖配体的功能参与调节人类乳腺癌细胞的生长

阅读:4
作者:Trupti Trivedi, Yu Zheng, Pierrick G J Fournier, Sreemala Murthy, Sutha John, Suzanne Schillo, Colin R Dunstan, Khalid S Mohammad, Hong Zhou, Markus J Seibel, Theresa A Guise

Abstract

Vitamin D has pleiotropic effects on multiple tissues, including malignant tumors. Vitamin D inhibits breast cancer growth through activation of the vitamin D receptor (VDR) and via classical nuclear signaling pathways. Here, we demonstrate that the VDR can also function in the absence of its ligand to control behaviour of human breast cancer cells both outside and within the bone microenvironment. Stable shRNA expression was used to knock down VDR expression in MCF-7 cells, generating two VDR knockdown clonal lines. In ligand-free culture, knockdown of VDR in MCF-7 cells significantly reduced proliferation and increased apoptosis, suggesting that the VDR plays a ligand-independent role in cancer cell growth. Implantation of these VDR knockdown cells into the mammary fat pad of nude mice resulted in reduced tumor growth in vivo compared with controls. In the intra-tibial xenograft model, VDR knockdown greatly reduced the ability of the cells to form tumors in the bone microenvironment. The in vitro growth of VDR knockdown cells was rescued by the expression of a mutant form of VDR which is unable to translocate to the nucleus and hence accumulates in the cytoplasm. Thus, our data indicate that in the absence of ligand, the VDR promotes breast cancer growth both in vitro and in vivo and that cytoplasmic accumulation of VDR is sufficient to produce this effect in vitro. This new mechanism of VDR action in breast cancer cells contrasts the known anti-proliferative nuclear actions of the VDR-vitamin D ligand complex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。