Comparative Anatomy of the Mammalian Corneal Subbasal Nerve Plexus

哺乳动物角膜基底神经丛的比较解剖学

阅读:12
作者:Carl Marfurt, Miracle C Anokwute, Kaleigh Fetcko, Erin Mahony-Perez, Hassan Farooq, Emily Ross, Maraya M Baumanis, Rachel L Weinberg, Megan E McCarron, Joseph L Mankowski

Conclusions

The results of the present study have demonstrated for the first time substantial interspecies differences in the architectural organization of the mammalian SNP. The physiological significance of these different patterns and the mechanisms that regulate SNP pattern formation in the mammalian cornea remain incompletely understood and warrant additional investigation.

Methods

Corneal nerves in mouse, rat, guinea pig, rabbit, dog, macaque, domestic pig, and cow eyes were stained immunohistochemically with antiserum directed against neurotubulin. SNP architecture was documented by digital photomicrography and large-scale reconstructions, that is, corneal nerve maps, using a drawing tube attached to a light microscope.

Purpose

The subbasal nerve plexus (SNP) is the densest and most recognizable component of the mammalian corneal innervation; however, the anatomical configuration of the SNP in most animal models remains incompletely described. The purpose of the current study is to describe in detail the SNP architecture in eight different mammals, including several popular animal models used in cornea research.

Results

Subbasal nerve fibers (SNFs) in mice, rats, guinea pigs, dogs, and macaques radiated centrally from the corneoscleral limbus toward the corneal apex in a whorl-like or spiraling pattern. SNFs in rabbit and bovine corneas swept horizontally across the ocular surface in a temporal-to-nasal direction and converged on the inferonasal limbus without forming a spiral. SNFs in the pig cornea radiated centrifugally in all directions, like a starburst, from a focal point located equidistant between the corneal apex and the superior pole. Conclusions: The results of the present study have demonstrated for the first time substantial interspecies differences in the architectural organization of the mammalian SNP. The physiological significance of these different patterns and the mechanisms that regulate SNP pattern formation in the mammalian cornea remain incompletely understood and warrant additional investigation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。