Evaluating the pharmacological activities of Aloe perryi-Silver nanoparticles induced apoptosis against colon cancer cells (HCT-116)

评估芦荟-银纳米粒子诱导结肠癌细胞(HCT-116)凋亡的药理活性

阅读:11
作者:Omar Hotan, Ali Alhaj, Abdulghfor Al-Quhaim, Khaled Alburaihi, Yahya Ahmed, Qassem Munasser, Saleh Bin Dhufer, Tammam Nasran, Mohammed Gabir, Akram Ebrahim, Mohammed Obadi, Maryam Hadi, Hanefa Al-Baity, Abdulmalek Ba-Nafea, Eskandar Qaed, Mohamed Y Zaky, Mohammed Okba, Abdullah Al-Nasi, Marwan Almoi

Abstract

Aloe perryi has been studied and possesses several activities, including antibacterial, antiparasitic, and anticancer properties. In this study, A. perryi was used as a reducing agent of silver ions into silver nanoparticles. Aloe perryi-silver nanoparticles (APS-NPs) were characterized and evaluated using characterization techniques. However, the antioxidative, antibacterial, and anticancer assays were studied to evaluate the pharmacological activities of APS-NPs. APS-NPs were developed and changed to dark brown and the maximum absorption was 442 nm. SEM (5-583 nm), TEM (4-110 nm), XRD (21.84 nm), and zeta potential analysis (63.39 nm) revealed that the APS-NPs were nano-sized, and the APS-NPs had a cubic crystalline structure, according to the XRD results. FTIR analysis suggested that functional groups of A. perryi metabolites were involved in forming APS-NPs. The zeta potential indicated that the APS-NPs were negatively charged (-32 mV), suggesting good stability. APS-NPs showed significant antioxidative stress activity by reducing DPPH-free radicles in a dose-dependent manner. APS-NPs-induced antibacterial effect against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Acinetobacter baumannii (A. baumannii). APS-NPs reduced the cell viability and cell migration of the human colon tumor cell line (HCT 116) compared with controls, indicating that APS-NPs could play a role in reducing metastasis and inducing cell apoptosis against colon cancer. In conclusion, the nanoparticle synthesis from A. perryi extract demonstrated excellent antioxidant, antibacterial, and anticancer activities, thus suggesting that our APS-NPs have the potential to be used as antioxidative and antibacterial in food and pharmaceutical industries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。