Enhanced Transcriptional Activation in Developing Mouse Photoreceptors

小鼠视网膜发育过程中感光细胞转录激活增强

阅读:1
作者:Brendon M Patierno ,Mark M Emerson

Conclusions

This study highlights the importance of identifying and testing relevant cis-regulatory elements when planning cell subtype-specific experiments. The use of specific hybrid elements will provide a more efficacious gene delivery system to study mammalian photoreceptor formation, which will benefit research with potential therapeutic relevance for blinding diseases.

Methods

Here we investigate whether the use of a photoreceptor cis-regulatory element from the Crx gene in combination with broadly active promoter elements can increase the targeting of developing photoreceptors in the mouse. This study characterizes the in vivo activity of this element for the first time, as well as explores its use as a tool for gain-of-function and loss-of-function experiments.

Purpose

Retinal development in the mouse continues past birth and provides a widely used model system in which photoreceptor formation can be observed and manipulated. This experimental paradigm provides opportunities for both gain-of-function and loss-of-function studies, which can be accomplished through in vivo or ex vivo plasmid delivery and electroporation. However, the cis-regulatory elements used to implement this approach have not been fully evaluated or optimized for the unique transcriptional environment of photoreceptors.

Results

We report that a cis-regulatory element from the Crx gene, in combination with broadly active promoter elements, increases the targeting of developing rod photoreceptors in the mouse. Additionally, the same element can be used to target developing cones at embryonic time points by ex vivo electroporation. Utility of this combined element includes greater reporter expression, as well as enhanced overexpression and loss-of-function phenotypes in photoreceptors. Conclusions: This study highlights the importance of identifying and testing relevant cis-regulatory elements when planning cell subtype-specific experiments. The use of specific hybrid elements will provide a more efficacious gene delivery system to study mammalian photoreceptor formation, which will benefit research with potential therapeutic relevance for blinding diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。