Determining PTEN functional status by network component deduced transcription factor activities

通过网络成分推断的转录因子活性确定 PTEN 功能状态

阅读:5
作者:Linh M Tran, Chun-Ju Chang, Seema Plaisier, Shumin Wu, Julie Dang, Paul S Mischel, James C Liao, Thomas G Graeber, Hong Wu

Abstract

PTEN-controlled PI3K-AKT-mTOR pathway represents one of the most deregulated signaling pathways in human cancers. With many small molecule inhibitors that target PI3K-AKT-mTOR pathway being exploited clinically, sensitive and reliable ways of stratifying patients according to their PTEN functional status and determining treatment outcomes are urgently needed. Heterogeneous loss of PTEN is commonly associated with human cancers and yet PTEN can also be regulated on epigenetic, transcriptional or post-translational levels, which makes the use of simple protein or gene expression-based analyses in determining PTEN status less accurate. In this study, we used network component analysis to identify 20 transcription factors (TFs) whose activities deduced from their target gene expressions were immediately altered upon the re-expression of PTEN in a PTEN-inducible system. Interestingly, PTEN controls the activities (TFA) rather than the expression levels of majority of these TFs and these PTEN-controlled TFAs are substantially altered in prostate cancer mouse models. Importantly, the activities of these TFs can be used to predict PTEN status in human prostate, breast and brain tumor samples with enhanced reliability when compared to straightforward IHC-based or expression-based analysis. Furthermore, our analysis indicates that unique sets of PTEN-controlled TFAs significantly contribute to specific tumor types. Together, our findings reveal that TFAs may be used as "signatures" for predicting PTEN functional status and elucidate the transcriptional architectures underlying human cancers caused by PTEN loss.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。