Encapsulation of Electrically Conductive Apparel Fabrics: Effects on Performance

导电服装面料的封装:对性能的影响

阅读:8
作者:Sophie Wilson, Raechel Laing, Eng Wui Tan, Cheryl Wilson

Abstract

Electrically conductive fabrics are achieved by functionalizing with treatments such as graphene; however, these change conventional fabric properties and the treatments are typically not durable. Encapsulation may provide a solution for this, and the present work aims to address these challenges. Next-to-skin wool and cotton knit fabrics functionalized using graphene ink were encapsulated with three poly(dimethylsiloxane)-based products. Properties known to be critical in a next-to-skin application were investigated (fabric structure, moisture transfer, electrical conductivity, exposure to transient ambient conditions, wash, abrasion, and storage). Wool and cotton fabrics performed similarly. Electrical conductivity was conferred with the graphene treatment but decreased with encapsulation. Wetting and high humidity/low temperature resulted in an increase in electrical conductivity, while decreases in electrical conductivity were evident with wash, abrasion, and storage. Each encapsulant mitigated effects of exposures but these effects differed slightly. Moisture transfer changed with graphene and encapsulants. As key performance properties of the wool and cotton fabrics following treatment with graphene and an encapsulant differed from their initial state, use as a patch integrated as part of an upper body apparel item would be acceptable.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。