Catalpol Enhances Osteogenic Differentiation of Human Periodontal Stem Cells and Modulates Periodontal Tissue Remodeling in an Orthodontic Tooth Movement Rat Model

梓醇增强人类牙周干细胞的成骨分化并调节正畸牙齿移动大鼠模型中的牙周组织重塑

阅读:9
作者:Jing Hu, Yang Song, Yuxing Zhang, Peng Yang, Siyu Chen, Zhaoyan Wu, Jun Zhang

Conclusion

CAT can promote hPDLSCs proliferation and osteogenic differentiation in vitro through the ER-α/PI3K/AKT pathway and enhance periodontal tissue remodeling in vivo using OTM models. These findings suggest the potential for the clinical application of catalpol in preventing relapse following OTM.

Methods

hPDLSCs were cultured in a laboratory setting, and their proliferation and osteogenic differentiation were assessed using the Cell-counting Kit-8 (CCK-8), Alizarin Red Staining (ARS), quantitative calcium assay, alkaline phosphatase (ALP) staining and activity assay, and immunofluorescence assay. Additionally, the expression of collagen type 1 (COL-1), ALP, and runt-related transcription factor-2 (RUNX-2) was evaluated through qRT-PCR and Western blot analysis. To verify the function of the estrogen receptor-α (ER-α)-mediated phosphatidylinositol-3-kinase-protein kinase B (PI3K/AKT) pathway in this mechanism, LY294002 (a PI3K signaling pathway inhibitor) and the ER-α specific inhibitor methyl-piperidine-pyrazole (MPP) were used. The osteogenic markers ER-α, AKT, and p-AKT (phosphoprotein kinase B) were identified through Western blot analysis. Eighteen male Sprague-Dawley rats were assigned to two groups randomly: a CAT group receiving CAT and a control group receiving an equivalent volume of saline. Micro-computed tomography (micro-CT) analysis was employed to evaluate tooth movement and changes in alveolar bone structure. Morphological changes in the periodontal tissues between the roots were investigated using hematoxylin and eosin (HE) staining and tartaric-resistant acid phosphatase (TRAP) staining. The expression of COL-1, RUNX-2, and nuclear factor-κB (NF-κB) ligand (RANKL) was assessed through immunohistochemical staining (IHC) to evaluate periodontal tissue remodeling. Tests were analyzed using GraphPad Prism 8 software. Differences among more than two groups were analyzed by one-way or two-way analysis of variance (ANOVA) followed by the Tukey's test. Values of p < 0.05 were regarded as statistically significant.

Purpose

This study examines the effects and mechanisms of catalpol (CAT) on the proliferation and osteogenic differentiation of cultured human periodontal ligament stem cells (hPDLSCs) in vitro and assesses the impact of CAT on periodontal remodeling in vivo using an orthodontic tooth movement (OTM) model in rats.

Results

In vitro experiments demonstrated that 10 μM CAT significantly promoted the proliferation, ALP activity, and calcium nodule formation of hPDLSCs, with a notable increase in the expression of COL-1, ALP, RUNX-2, ER-α, and p-AKT. The PI3K/AKT pathway was inhibited by LY294002, and further analysis using MPP suggested that ER-α mediated this effect. In vivo, experiments indicated that CAT enhanced the expression of COL-1 and RUNX-2 on the tension side of rat tooth roots, reduced the number of osteoclasts on the compression side, inhibited RANKL expression, and suppressed OTM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。