Toward a cell-free hydantoinase process: screening for expression optimization and one-step purification as well as immobilization of hydantoinase and carbamoylase

无细胞乙内酰脲酶工艺:筛选表达优化、一步纯化以及乙内酰脲酶和氨基甲酰酶的固定化

阅读:13
作者:Christin Slomka, Georg Paris Späth, Phillip Lemke, Marc Skoupi, Christof M Niemeyer, Christoph Syldatk, Jens Rudat

Abstract

The hydantoinase process is applied for the industrial synthesis of optically pure amino acids via whole cell biocatalysis, providing a simple and well-established method to obtain the catalyst. Nevertheless, whole cell approaches also bear disadvantages like intracellular degradation reactions, transport limitations as well as low substrate solubility. In this work the hydantoinase and carbamoylase from Arthrobacter crystallopoietes DSM 20117 were investigated with respect to their applicability in a cell-free hydantoinase process. Both enzymes were heterologously expressed in Escherichia coli BL21DE3. Cultivation and induction of the hydantoinase under oxygen deficiency resulted in markedly higher specific activities and a further increase in expression was achieved by codon-optimization. Further expression conditions of the hydantoinase were tested using the microbioreactor system BioLector®, which showed a positive effect upon the addition of 3% ethanol to the cultivation medium. Additionally, the hydantoinase and carbamoylase were successfully purified by immobilized metal ion affinity using Ni Sepharose beads as well as by functionalized magnetic beads, while the latter method was clearly more effective with respect to recovery and purification factor. Immobilization of both enzymes via functionalized magnetic beads directly from the crude cell extract was successful and resulted in specific activities that turned out to be much higher than those of the purified free enzymes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。