Transcriptomic Reprograming of Xanthomonas campestris pv. campestris after Treatment with Hydrolytic Products Derived from Glucosinolates

用硫代葡萄糖苷水解产物处理后野油菜黄单胞菌 (Xanthomonas campestris pv. campestris) 的转录组重编程

阅读:5
作者:Pari Madloo, Margarita Lema, Victor Manuel Rodríguez, Pilar Soengas

Abstract

The bacterium Xanthomonas campestris pv. campestris (Xcc) causes black rot disease in Brassica crops. Glucosinolates are known to be part of the defence system of Brassica crops against Xcc infection. They are activated upon pathogen attack by myrosinase enzymes. Their hydrolytic products (GHPs) inhibit the growth of Xcc in vitro. However, the mechanisms underlying this inhibition and the way Xcc can overcome it are not well understood. We studied the transcriptomic reprogramming of Xcc after being supplemented with two chemically different GHPs, one aliphatic isothiocyanate (allyl-ITC) and one indole (indol-3-carbinol), by RNA-seq. Based on our results, the arrest in Xcc growth is related to the need to stop cell division to repair damaged DNA and cell envelope components. Otherwise, GHPs modify energy metabolism by inhibiting aerobic respiration and increasing the synthesis of glycogen. Xcc induces detoxification mechanisms such as the antioxidant defence system and the multidrug efflux system to cope with the toxic effects driven by GHPs. This is the first time that the transcriptomic reprogramming of a plant pathogenic bacterium treated with GHPs has been studied. This information will allow a better understanding of the interaction of a plant pathogen mediated by GSLs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。