Designing Silver Nanoparticles for Detecting Levodopa (3,4-Dihydroxyphenylalanine, L-Dopa) Using Surface-Enhanced Raman Scattering (SERS)

利用表面增强拉曼散射 (SERS) 设计用于检测左旋多巴(3,4-二羟基苯丙氨酸,L-多巴)的银纳米粒子

阅读:6
作者:Rafael Jesus Gonçalves Rubira, Sabrina Alessio Camacho, Cibely Silva Martin, Jorge Ricardo Mejía-Salazar, Faustino Reyes Gómez, Robson Rosa da Silva, Osvaldo Novais de Oliveira Junior, Priscila Alessio, Carlos José Leopoldo Constantino

Abstract

Detection of the drug Levodopa (3,4-dihydroxyphenylalanine, L-Dopa) is essential for the medical treatment of several neural disorders, including Parkinson's disease. In this paper, we employed surface-enhanced Raman scattering (SERS) with three shapes of silver nanoparticles (nanostars, AgNS; nanospheres, AgNP; and nanoplates, AgNPL) to detect L-Dopa in the nanoparticle dispersions. The sensitivity of the L-Dopa SERS signal depended on both nanoparticle shape and L-Dopa concentration. The adsorption mechanisms of L-Dopa on the nanoparticles inferred from a detailed analysis of the Raman spectra allowed us to determine the chemical groups involved. For instance, at concentrations below/equivalent to the limit found in human plasma (between 10-7-10-8 mol/L), L-Dopa adsorbs on AgNP through its ring, while at 10-5-10-6 mol/L adsorption is driven by the amino group. At even higher concentrations, above 10-4 mol/L, L-Dopa polymerization predominates. Therefore, our results show that adsorption depends on both the type of Ag nanoparticles (shape and chemical groups surrounding the Ag surface) and the L-Dopa concentration. The overall strategy based on SERS is a step forward to the design of nanostructures to detect analytes of clinical interest with high specificity and at varied concentration ranges.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。