Comparison of frequency and strain-rate domain mechanical characterization

频率和应变率域力学表征的比较

阅读:6
作者:Luca Bartolini, Davide Iannuzzi, Giorgio Mattei

Abstract

Indentation is becoming increasingly popular to test soft tissues and (bio)materials. Each material exhibits an unknown intrinsic "mechanical behaviour". However, limited consensus on its "mechanical properties" (i.e. quantitative descriptors of mechanical behaviour) is generally present in the literature due to a number of factors, which include sample preparation, testing method and analysis model chosen. Viscoelastic characterisation - critical in applications subjected to dynamic loading conditions - can be performed in either the time- or frequency-domain. It is thus important to selectively investigate whether the testing domain affects the mechanical results or not. We recently presented an optomechanical indentation tool which enables both strain-rate (nano-[Formula: see text]) and frequency domain (DMA) measurements while keeping the sample under the same physical conditions and eliminating any other variability factor. In this study, a poly(dimethylsiloxane) sample was characterised with our system. The DMA data were inverted to the time-domain through integral transformations and then directly related to nano-[Formula: see text] strain-rate dependent results, showing that, even though the data do not perfectly overlap, there is an excellent correlation between them. This approach indicates that one can convert an oscillatory measurement into a strain-rate one and still capture the trend of the "mechanical behaviour" of the sample investigated.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。