The hydrogen-peroxide producing NADPH oxidase 4 does not limit neointima development after vascular injury in mice

产生过氧化氢的 NADPH 氧化酶 4 不会限制小鼠血管损伤后的新内膜发育

阅读:5
作者:Giulia K Buchmann, Christoph Schürmann, Manuela Spaeth, Wesley Abplanalp, Lukas Tombor, David John, Timothy Warwick, Flávia Rezende, Andreas Weigert, Ajay M Shah, Martin-Leo Hansmann, Norbert Weissmann, Stefanie Dimmeler, Katrin Schröder, Ralf P Brandes

Conclusion

Upon vascular injury, Nox4 expression is transiently lost in the cells which comprise the neointima. NADPH oxidase 4 therefore does not interfere with restenosis development after wire-induced vascular injury.

Objective

The NADPH oxidase Nox4 is an important source of H2O2. Nox4-derived H2O2 limits vascular inflammation and promotes smooth muscle differentiation. On this basis, the role of Nox4 for restenosis development was determined in the mouse carotid artery injury model.

Results

Genetic deletion of Nox4 by a tamoxifen-activated Cre-Lox-system did not impact on neointima formation in the carotid artery wire injury model. To understand this unexpected finding, time-resolved single-cell RNA-sequencing (scRNAseq) from injured carotid arteries of control mice and massive-analysis-of-cDNA-ends (MACE)-RNAseq from the neointima harvested by laser capture microdissection of control and Nox4 knockout mice was performed. This revealed that resting smooth muscle cells (SMCs) and fibroblasts exhibit high Nox4 expression, but that the proliferating de-differentiated SMCs, which give rise to the neointima, have low Nox4 expression. In line with this, the first weeks after injury, gene expression was unchanged between the carotid artery neointimas of control and Nox4 knockout mice.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。