Altered Renal Vascular Responsiveness to Vasoactive Agents in Rats with Angiotensin II-Dependent Hypertension and Congestive Heart Failure

血管紧张素 II 依赖性高血压和充血性心力衰竭大鼠肾血管对血管活性药物的反应性改变

阅读:7
作者:Šárka Vacková, Soňa Kikerlová, Vojtěch Melenovsky, František Kolář, John D Imig, Elzbieta Kompanowska-Jezierska, Janusz Sadowski, Luděk Červenka

Conclusion

The findings show that 5 weeks after creation of ACF, the TGR exhibit exaggerated renal vasoconstrictor responses to ANG II and reduced renal vasodilatory responses to EETs, suggesting that both these alterations might play an important role in the development of renal dysfunction in this model of CHF.

Methods

Ren-2 transgenic rats (TGRs) were used as a model of ANG II-dependent hypertension. CHF was induced by volume overload achieved by the creation of the aorto-caval fistula (ACF). Renal blood flow (RBF) responses were determined to renal arterial administration of ANG II, native 11,12-EET, an analog of 14,15-EETs (EET-A), norepinephrine (NE), acetylcholine (Ach) and bradykinin (Bk) in healthy (i.e., sham-operated) TGR and ACF TGR (5 weeks after ACF creation).

Objective

We evaluated the hypothesis that the development of renal dysfunction and congestive heart failure (CHF) caused by volume overload in rats with angiotensin II (ANG II)-dependent hypertension is associated with altered renal vascular responsiveness to ANG II and to epoxyeicosatrienoic acids (EETs).

Results

Selective intrarenal administration of neither vasoactive drug altered mean arterial pressure in any group. Administration of ANG II caused greater decreases in RBF in ACF TGR than in sham-operated TGR, whereas after administration of NE the respective decreases were comparable in the 2 groups. Administration of Ach and Bk elicited significantly higher RBF increases in ACF TGR as compared with sham-operated TGR. In contrast, administration of 11,12-EET and EET-A caused significantly smaller RBF increases in ACF TGR than in sham-operated TGR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。