Allosteric Regulation of IGF2BP1 as a Novel Strategy for the Activation of Tumor Immune Microenvironment

IGF2BP1 变构调控作为激活肿瘤免疫微环境的新策略

阅读:7
作者:Yang Liu, Qiang Guo, Heng Yang, Xiao-Wen Zhang, Na Feng, Jing-Kang Wang, Ting-Ting Liu, Ke-Wu Zeng, Peng-Fei Tu

Abstract

Tumor immune microenvironment (TIME) regulators are promising cancer immunotherapeutic targets. IGF2BP1, as a crucial N 6-methyladenosine (m6A) reader protein, recognizes m6A target transcripts, ultimately leading to cancer development. However, currently, the biological function of IGF2BP1 in regulating the TIME is not well-understood. In this study, we report that IGF2BP1 knockdown induces cancer cell apoptosis, thereby significantly not only activating immune cell infiltration including CD4+, CD8+ T cells, CD56+ NK cells, and F4/80+ macrophage but also decreasing PD-L1 expression in hepatocellular carcinoma (HCC). Then, chemical genetics identifies a small-molecule cucurbitacin B (CuB), which directly targets IGF2BP1 at a unique site (Cys253) in the KH1-2 domains. This leads to a pharmacological allosteric effect to block IGF2BP1 recognition of m6A mRNA targets such as c-MYC, which is highly associated with cell apoptosis and immune response. In vivo, CuB exhibits an obvious anti-HCC effect through inducing apoptosis and subsequently recruits immune cells to tumor microenvironment as well as blocking PD-L1 expression. Collectively, IGF2BP1 may serve as a novel pharmacological allosteric target for anticancer therapeutics via mediating TIME.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。