Effects of compound probiotics and aflatoxin-degradation enzyme on alleviating aflatoxin-induced cytotoxicity in chicken embryo primary intestinal epithelium, liver and kidney cells

复合益生菌与黄曲霉毒素降解酶对鸡胚原代肠上皮及肝肾细胞毒性的影响

阅读:5
作者:Hong-Wei Guo, Juan Chang, Ping Wang, Qing-Qiang Yin, Chao-Qi Liu, Xiao-Xiang Xu, Xiao-Wei Dang, Xiao-Fei Hu, Quan-Liang Wang

Abstract

Aflatoxin B1 (AFB1) is one of the most dangerous mycotoxins for humans and animals. This study aimed to investigate the effects of compound probiotics (CP), CP supernatant (CPS), AFB1-degradation enzyme (ADE) on chicken embryo primary intestinal epithelium, liver and kidney cell viabilities, and to determine the functions of CP + ADE (CPADE) or CPS + ADE (CPSADE) for alleviating cytotoxicity induced by AFB1. The results showed that AFB1 decreased cell viabilities in dose-dependent and time-dependent manners. The optimal AFB1 concentrations and reactive time for establishing cell damage models were 200 µg/L AFB1 and 12 h for intestinal epithelium cells, 40 µg/L and 12 h for liver and kidney cells. Cell viabilities reached 231.58% (p < 0.05) for intestinal epithelium cells with CP addition, 105.29% and 115.84% (p < 0.05) for kidney and liver cells with CPS additions. The further results showed that intestinal epithelium, liver and kidney cell viabilities were significantly decreased to 87.12%, 88.7% and 84.19% (p < 0.05) when the cells were exposed to AFB1; however, they were increased to 93.49% by CPADE addition, 102.33% and 94.71% by CPSADE additions (p < 0.05). The relative mRNA abundances of IL-6, IL-8, TNF-α, iNOS, NF-κB, NOD1 (except liver cell) and TLR2 in three kinds of primary cells were significantly down-regulated by CPADE or CPSADE addition, compared with single AFB1 group (p < 0.05), indicating that CPADE or CPSADE addition could alleviate cell cytotoxicity and inflammation induced by AFB1 exposure through suppressing the activations of NF-κB, iNOS, NOD1 and TLR2 pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。