Improving the Catalytic Property of the Glycoside Hydrolase LXYL-P1-2 by Directed Evolution

通过定向进化提高糖苷水解酶LXYL-P1-2的催化性能

阅读:7
作者:Jing-Jing Chen, Xiao Liang, Hui-Xian Li, Tian-Jiao Chen, Ping Zhu

Abstract

The glycoside hydrolase LXYL-P1-2 from Lentinula edodes can specifically hydrolyze 7-β-xylosyltaxanes to form 7-β-hydroxyltaxanes for the semi-synthesis of paclitaxel. In order to improve the catalytic properties of the enzyme, we performed error-prone PCR to construct the random mutant library of LXYL-P1-2 and used the methanol-induced plate method to screen the mutants with improved catalytic properties. Two variants, LXYL-P1-2-EP1 (EP1, S91D mutation) and LXYL-P1-2-EP2 (EP2, T368E mutation), were obtained from the library and exhibited 17% and 47% increases in their catalytic efficiencies on 7-β-xylosyl-10-deacetyltaxol. Meanwhile, compared with LXYL-P1-2, EP1 and EP2 showed elevated stabilities in the range of pH ≥ 6 conditions. After treatment at pH 12 for 48 h, EP1 and EP2 retained 77% and 63% activities, respectively, while the wild-type only retained 33% activity under the same condition. Molecular docking results revealed that the S91D mutation led to a shorter distance between the R-chain and the substrate, while the T368E mutation increased negative charge at the surface of the enzyme, and may introduce alterations of the loop near the active pocket, both of which may result in improved stabilities and catalytic activities of enzymes. This study provides a practical directed evolution method for exploring catalytically improved glycoside hydrolase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。