Osthole-Mediated Inhibition of Neurotoxicity Induced by Ropivacaine via Amplification of the Cyclic Adenosine Monophosphate Signaling Pathway

蛇床子素通过扩增环磷酸腺苷信号通路抑制罗哌卡因引起的神经毒性

阅读:6
作者:WeiBing Wang, Hui Zhou, LaiBao Sun, MeiNa Li, FengJiao Gao, AiJiao Sun, XueNong Zou

Background

Ropivacaine is widely used for clinical anesthesia and postoperative analgesia. However, the neurotoxicity induced by ropivacaine in a concentration- and duration-dependent manner, and it is difficult to prevent neurotoxicity. Osthole inhibits phosphodiesterase-4 activity by binding to its catalytic site to prevent cAMP hydrolysis. The

Conclusions

This study display the evidence confirmed the molecular mechanism by which osthole amplification of cAMP-dependent signaling pathway, and overexpression of cyclic nucleotide response element-binding protein inhibits P38-dependent signaling and decreases ropivacaine-induced SH-SY5Y apoptosis.

Methods

SH-SY5Y cell viability and apoptosis were measured in different concentration and duration. Protein concentration was determined in each signaling pathway. The molecular mechanism of osthole-mediated inhibition of ropivacaine-caused neurotoxicity was evaluated.

Results

The study demonstrated that osthole inhibits SH-SY5Y cells neurotoxicity in a duration- and concentration-dependent manner. Moreover, ropivacaine significantly increased the expression of caspase-3 by promoting the phosphorylation of p38. Osthole-induced upregulation of cAMP activated cAMP-dependent signaling pathway, sequentially leading to elevated cyclic nucleotide response element-binding protein levels, which inhibits P38-dependent signaling and decreases apoptosis of SH-SY5Y. Conclusions: This study display the evidence confirmed the molecular mechanism by which osthole amplification of cAMP-dependent signaling pathway, and overexpression of cyclic nucleotide response element-binding protein inhibits P38-dependent signaling and decreases ropivacaine-induced SH-SY5Y apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。