CXCL14 deficiency in mice attenuates obesity and inhibits feeding behavior in a novel environment

小鼠 CXCL14 缺乏可减轻肥胖并抑制新环境中的进食行为

阅读:7
作者:Kosuke Tanegashima, Shiki Okamoto, Yuki Nakayama, Choji Taya, Hiroshi Shitara, Rie Ishii, Hiromichi Yonekawa, Yasuhiko Minokoshi, Takahiko Hara

Background

CXCL14 is a chemoattractant for macrophages and immature dendritic cells. We recently reported that CXCL14-deficient (CXCL14(-/-)) female mice in the mixed background are protected from obesity-induced hyperglycemia and insulin resistance. The decreased macrophage infiltration into visceral adipose tissues and the increased insulin sensitivity of skeletal muscle contributed to these phenotypes. Methodology/principal findings: In this study, we performed a comprehensive study for the body weight control of CXCL14(-/-) mice in the C57BL/6 background. We show that both male and female CXCL14(-/-) mice have a 7-11% lower body weight compared to CXCL14(+/-) and CXCL14(+/+) mice in adulthood. This is mainly caused by decreased food intake, and not by increased energy expenditure or locomotor activity. Reduced body weight resulting from the CXCL14 deficiency was more pronounced in double mutant CXCL14(-/-)ob/ob and CXCL14(-/-)A(y) mice. In the case of CXCL14(-/-)A(y) mice, oxygen consumption was increased compared to CXCL14(+/-)A(y) mice, in addition to the reduced food intake. In CXCL14(-/-) mice, fasting-induced up-regulation of Npy and Agrp mRNAs in the hypothalamus was blunted. As intracerebroventricular injection of recombinant CXCL14 did not change the food intake of CXCL14(-/-) mice, CXCL14 could indirectly regulate appetite. Intriguingly, the food intake of CXCL14(-/-) mice was significantly repressed when mice were transferred to a novel environment. Conclusions/significance: We demonstrated that CXCL14 is involved in the body weight control leading to the fully obese phenotype in leptin-deficient or A(y) mutant mice. In addition, we obtained evidence indicating that CXCL14 may play an important role in central nervous system regulation of feeding behavior.

Significance

We demonstrated that CXCL14 is involved in the body weight control leading to the fully obese phenotype in leptin-deficient or A(y) mutant mice. In addition, we obtained evidence indicating that CXCL14 may play an important role in central nervous system regulation of feeding behavior.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。