Background
The heterogeneous phenotype of diabetic nephropathy (DN) from type 2 diabetes complicates appropriate treatment approaches and outcome prediction. Kidney histology helps diagnose DN and predict its outcomes, and an artificial intelligence (AI)-based approach will maximize clinical utility of histopathological evaluation. Herein, we addressed whether AI-based integration of urine proteomics and image features improves DN classification and its outcome prediction, altogether augmenting and advancing pathology practice.
Conclusions
Computational method-based integration of urinary and image biomarkers may improve the pathophysiological understanding of DN progression as well as carry clinical implications in histopathological evaluation.
Methods
We studied whole slide images (WSIs) of periodic acid-Schiff-stained kidney biopsies from 56 DN patients with associated urinary proteomics data. We identified urinary proteins differentially expressed in patients who developed end-stage kidney disease (ESKD) within two years of biopsy. Extending our previously published human-AI-loop pipeline, six renal sub-compartments were computationally segmented from each WSI. Hand-engineered image features for glomeruli and tubules, and urinary protein measurements, were used as inputs to deep-learning frameworks to predict ESKD outcome. Differential expression was correlated with digital image features using the Spearman rank sum coefficient.
Results
A total of 45 urinary proteins were differentially detected in progressors, which was most predictive of ESKD (AUC=0.95), while tubular and glomerular features were less predictive (AUC=0.71 and AUC=0.63, respectively). Accordingly, a correlation map between canonical cell-type proteins, such as epidermal growth factor and secreted phosphoprotein 1, and AI-based image features was obtained, which supports previous pathobiological results. Conclusions: Computational method-based integration of urinary and image biomarkers may improve the pathophysiological understanding of DN progression as well as carry clinical implications in histopathological evaluation.
