Discovery of Novel Digital Biomarkers for Type 2 Diabetic Nephropathy Classification via Integration of Urinary Proteomics and Pathology

通过整合尿液蛋白质组学和病理学发现 2 型糖尿病肾病分类的新型数字生物标记物

阅读:5
作者:Nicholas Lucarelli, Donghwan Yun, Dohyun Han, Brandon Ginley, Kyung Chul Moon, Avi Z Rosenberg, John E Tomaszewski, Jarcy Zee, Kuang-Yu Jen, Seung Seok Han, Pinaki Sarder2

Background

The heterogeneous phenotype of diabetic nephropathy (DN) from type 2 diabetes complicates appropriate treatment approaches and outcome prediction. Kidney histology helps diagnose DN and predict its outcomes, and an artificial intelligence (AI)-based approach will maximize clinical utility of histopathological evaluation. Herein, we addressed whether AI-based integration of urine proteomics and image features improves DN classification and its outcome prediction, altogether augmenting and advancing pathology practice.

Conclusions

Computational method-based integration of urinary and image biomarkers may improve the pathophysiological understanding of DN progression as well as carry clinical implications in histopathological evaluation.

Methods

We studied whole slide images (WSIs) of periodic acid-Schiff-stained kidney biopsies from 56 DN patients with associated urinary proteomics data. We identified urinary proteins differentially expressed in patients who developed end-stage kidney disease (ESKD) within two years of biopsy. Extending our previously published human-AI-loop pipeline, six renal sub-compartments were computationally segmented from each WSI. Hand-engineered image features for glomeruli and tubules, and urinary protein measurements, were used as inputs to deep-learning frameworks to predict ESKD outcome. Differential expression was correlated with digital image features using the Spearman rank sum coefficient.

Results

A total of 45 urinary proteins were differentially detected in progressors, which was most predictive of ESKD (AUC=0.95), while tubular and glomerular features were less predictive (AUC=0.71 and AUC=0.63, respectively). Accordingly, a correlation map between canonical cell-type proteins, such as epidermal growth factor and secreted phosphoprotein 1, and AI-based image features was obtained, which supports previous pathobiological results. Conclusions: Computational method-based integration of urinary and image biomarkers may improve the pathophysiological understanding of DN progression as well as carry clinical implications in histopathological evaluation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。