MLX plays a key role in lipid and glucose metabolism in humans: Evidence from in vitro and in vivo studies

MLX在人体脂质和葡萄糖代谢中发挥关键作用:来自体外和体内研究的证据

阅读:1
作者:Shilpa R Nagarajan ,Eilidh J Livingstone ,Thomas Monfeuga ,Lara C Lewis ,Shahul Hameed Liyakath Ali ,Anandhakumar Chandran ,David J Dearlove ,Matt J Neville ,Lingyan Chen ,Cyrielle Maroteau ,Maxwell A Ruby ,Leanne Hodson

Abstract

Background and aim: Enhanced hepatic de novo lipogenesis (DNL) has been proposed as an underlying mechanism for the development of NAFLD and insulin resistance. Max-like protein factor X (MLX) acts as a heterodimer binding partner for glucose sensing transcription factors and inhibition of MLX or downstream targets has been shown to alleviate intrahepatic triglyceride (IHTG) accumulation in mice. However, its effect on insulin sensitivity remains unclear. As human data is lacking, the aim of the present work was to investigate the role of MLX in regulating lipid and glucose metabolism in primary human hepatocytes (PHH) and in healthy participants with and without MLX polymorphisms. Methods: PHH were transfected with non-targeting or MLX siRNA to assess the effect of MLX knockdown on lipid and glucose metabolism, insulin signalling and the hepatocellular transcriptome. A targeted association analysis on imputed genotype data for MLX on healthy individuals was undertaken to assess associations between specific MLX SNPs (rs665268, rs632758 and rs1474040), plasma biochemistry, IHTG content, DNL and gluconeogenesis. Results: MLX knockdown in PHH altered lipid metabolism (decreased DNL (p < 0.05), increased fatty acid oxidation and ketogenesis (p < 0.05), and reduced lipid accumulation (p < 0.001)). Additionally, MLX knockdown increased glycolysis, lactate secretion and glucose production (p < 0.001) and insulin-stimulated pAKT levels (p < 0.01) as assessed by transcriptomic, steady-state and dynamic measurements. Consistent with the in vitro data, individuals with the rs1474040-A and rs632758-C variants had lower fasting plasma insulin (p < 0.05 and p < 0.01, respectively) and TG (p < 0.05 and p < 0.01, respectively). Although there was no difference in IHTG or gluconeogenesis, individuals with rs632758 SNP had notably lower hepatic DNL (p < 0.01). Conclusion: We have demonstrated using human in vitro and in vivo models that MLX inhibition favored lipid catabolism over anabolism and increased glucose production, despite increased glycolysis and phosphorylation of Akt, suggesting a metabolic mechanism that involves futile cycling. Keywords: DNL; Glucose; Hepatocytes; Human; Insulin; MLX.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。