Kinetic control of nascent protein biogenesis by peptide deformylase

肽脱甲酰酶对新生蛋白质生物合成的动力学控制

阅读:11
作者:Lena A K Bögeholz, Evan Mercier, Wolfgang Wintermeyer, Marina V Rodnina

Abstract

Synthesis of bacterial proteins on the ribosome starts with a formylated methionine. Removal of the N-terminal formyl group is essential and is carried out by peptide deformylase (PDF). Deformylation occurs co-translationally, shortly after the nascent-chain emerges from the ribosomal exit tunnel, and is necessary to allow for further N-terminal processing. Here we describe the kinetic mechanism of deformylation by PDF of ribosome-bound nascent-chains and show that PDF binding to and dissociation from ribosomes is rapid, allowing for efficient scanning of formylated substrates in the cell. The rate-limiting step in the PDF mechanism is a conformational rearrangement of the nascent-chain that takes place after cleavage of the formyl group. Under conditions of ongoing translation, the nascent-chain is deformylated rapidly as soon as it becomes accessible to PDF. Following deformylation, the enzyme is slow in releasing the deformylated nascent-chain, thereby delaying further processing and potentially acting as an early chaperone that protects short nascent chains before they reach a length sufficient to recruit other protein biogenesis factors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。