Flavonoid-attracted Aeromonas sp. from the Arabidopsis root microbiome enhances plant dehydration resistance

拟南芥根部微生物组中的黄酮类化合物吸引气单胞菌增强植物的抗脱水能力

阅读:11
作者:Danxia He, Sunil K Singh, Li Peng, Richa Kaushal, Juan I Vílchez, Chuyang Shao, Xiaoxuan Wu, Shuai Zheng, Rafael J L Morcillo, Paul W Paré, Huiming Zhang

Abstract

Flavonoids are stress-inducible metabolites important for plant-microbe interactions. In contrast to their well-known function in initiating rhizobia nodulation in legumes, little is known about whether and how flavonoids may contribute to plant stress resistance through affecting non-nodulating bacteria. Here we show that flavonoids broadly contribute to the diversity of the Arabidopsis root microbiome and preferentially attract Aeromonadaceae, which included a cultivable Aeromonas sp. H1 that displayed flavonoid-induced chemotaxis with transcriptional enhancement of flagellum biogenesis and suppression of fumarate reduction for smooth swims. Strain H1 showed multiple plant-beneficial traits and enhanced plant dehydration resistance, which required flavonoids but not through a sudden "cry-for-help" upon stress. Strain H1 boosted dehydration-induced H2O2 accumulation in guard cells and stomatal closure, concomitant with synergistic induction of jasmonic acid-related regulators of plant dehydration resistance. These findings revealed a key role of flavonoids, and the underlying mechanism, in mediating plant-microbiome interactions including the bacteria-enhanced plant dehydration resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。