Plasma metabolomics of children with aberrant serum lipids and inadequate micronutrient intake

血脂异常及微量营养素摄入不足儿童的血浆代谢组学

阅读:9
作者:Katherine J Li, NaNet Jenkins, Gary Luckasen, Sangeeta Rao, Elizabeth P Ryan

Abstract

Blood lipids have served as key biomarkers for cardiovascular disease (CVD) risk, yet emerging evidence indicates metabolite profiling might reveal a larger repertoire of small molecules that reflect altered metabolism, and which may be associated with early disease risk. Inadequate micronutrient status may also drive or exacerbate CVD risk factors that emerge during childhood. This study aimed to understand relationships between serum lipid levels, the plasma metabolome, and micronutrient status in 38 children (10 ± 0.8 years) at risk for CVD. Serum lipid levels were measured via autoanalyzer and average daily micronutrient intakes were calculated from 3-day food logs. Plasma metabolites were extracted using 80% methanol and analyzed via ultra-high-performance liquid chromatography-tandem mass spectrometry. Spearman's rank-order coefficients (rs) were computed for correlations between the following serum lipids [total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and triglycerides (TG)], 805 plasma metabolites, and 17 essential micronutrients. Serum lipid levels in the children ranged from 128-255 mg/dL for total cholesterol, 67-198 mg/dL for LDL, 31-58 mg/dL for HDL, and 46-197 mg/dL for TG. The majority of children (71 to 100%) had levels lower than the Recommended Daily Allowance for vitamin E, calcium, magnesium, folate, vitamin D, and potassium. For sodium, 76% of children had levels above the Upper Limit of intake. Approximately 30% of the plasma metabolome (235 metabolites) were significantly correlated with serum lipids. As expected, plasma cholesterol was positively correlated with serum total cholesterol (rs = 0.6654; p<0.0001). Additionally, 27 plasma metabolites were strongly correlated with serum TG (rs ≥0.60; p≤0.0001), including alanine and diacylglycerols, which have previously been associated with cardiometabolic and atherosclerotic risk in adults and experimental animals. Plasma metabolite profiling alongside known modifiable risk factors for children merit continued investigation in epidemiological studies to assist with early CVD detection, mitigation, and prevention via lifestyle-based interventions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。