Abstract
Polarimetric determination of glucose is known to be strongly affected by scattering in turbid media. Other effects like fluctuations of light source emission and sample absorption also deteriorate glucose predictability. This work presents a measurement setup using a real-time data processing method to address these problems. The approach uses the frequency-dependent intensity components created when the polarization of the incident light is periodically modulated by a Faraday rotator. The efficacy of the proposed method was verified experimentally for a glucose range of 0 - 500 mg/dl. It was shown that the approach reduces the prediction errors in slightly turbid media from 35.7 mg/dl down to 1.17 mg/dl. In a similar way, the glucose predictability for fluctuating light source emission was improved from ±16.16 mg/dl to ±1 mg/dl and for varying sample absorbance from ±15.69 mg/dl to ±1.23 mg/dl, respectively. Therefore, considerable improvement of robustness and reproducibility of glucose determination was demonstrated.
