Photochemical Production of Carbon Monoxide from Dissolved Organic Matter: Role of Lignin Methoxyarene Functional Groups

光化学法从溶解有机物中生产一氧化碳:木质素甲氧基芳烃官能团的作用

阅读:4
作者:Rachele Ossola, Richard Gruseck, Joanna Houska, Alessandro Manfrin, Morgan Vallieres, Kristopher McNeill

Abstract

Carbon monoxide (CO) is the second most abundant identified product of dissolved organic matter (DOM) photodegradation after CO2, but its formation mechanism remains unknown. Previous work showed that aqueous photodegradation of methoxy-substituted aromatics (ArOCH3) produces CO considerably more efficiently than aromatic carbonyls. Following on this precedent, we propose that the methoxy aromatic groups of lignin act as the C source for the photochemical formation of CO from terrestrial DOM via a two-step pathway: formal hydrolytic demethylation to methanol and methanol oxidation to CO. To test the reasonableness of this mechanism, we investigated the photochemistry of eight lignin model compounds. We first observed that initial CO production rates are positively correlated with initial substrate degradation rates only for models containing at least one ArOCH3 group, regardless of other structural features. We then confirmed that all ArOCH3-containing substrates undergo formal hydrolytic demethylation by detecting methanol and the corresponding phenolic transformation products. Finally, we showed that hydroxyl radicals, likely oxidants to initiate methanol oxidation to CO, form during irradiation of all models. This work proposes an explicit mechanism linking ubiquitous, abundant, and easily quantifiable DOM functionalities to CO photoproduction. Our results further hint that methanol may be an abundant (yet overlooked) DOM photoproduct and a likely precursor of formaldehyde, formic acid, and CO2 and that lignin photodegradation may represent a source of hydroxyl radicals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。