Fluorescence Lifetimes and Spectra of RPE and Sub-RPE Deposits in Histology of Control and AMD Eyes

对照眼和 AMD 眼组织学中 RPE 和亚 RPE 沉积物的荧光寿命和光谱

阅读:5
作者:Rowena Schultz, Kushmali C L K Gamage, Jeffrey D Messinger, Christine A Curcio, Martin Hammer

Conclusions

Ex vivo fluorescence imaging of sub-RPE deposits in cross-sections enables the separation of their autofluorescence from that of over- or underlying structures. Our analysis showed considerable variability of sub-RPE deposit lifetimes but not spectra. This indicates that sub-RPE deposits either consist of a variety of different fluorophores or expose the same fluorophores to different microenvironments.

Methods

Fluorescence lifetimes and spectra of five eyes with AMD and nine control eyes were analyzed in cryosections by means of two-photon excited fluorescence at 960 nm. Spectra were detected at 490 to 647 nm. Lifetimes were measured using time-correlated single photon counting in two spectral channels: 500 to 550 nm and 550 to 700 nm. Fluorescence decays over time were approximated by a series of three exponential functions. The amplitude-weighted mean fluorescence lifetime was determined.

Purpose

To investigate fluorescence lifetimes as well as spectral characteristics of drusen and RPE autofluorescence in AMD.

Results

We identified 196 sub-RPE deposits (AMD, n = 76; control, n = 120) and recorded 241 RPE sites. The peak emission wavelength of sub-RPE deposits was significantly green shifted compared with RPE (peak at 570 nm vs. 610 nm), but did not differ between AMD and control donors. Sub-RPE deposits showed considerably longer mean fluorescence lifetimes than RPE (ch1, 581 ± 163 ps vs. 177 ± 25 ps; ch2, 541 ± 125 ps vs. 285 ± 31 ps; P < 0.001). Sub-RPE deposits found in AMD eyes had longer lifetimes than deposits of controls (ch1, 650 ± 167 ps vs. 537 ± 145 ps; ch2, 600 ± 125 ps vs. 504 ± 111 ps; P < 0.001). In AMD eyes, sub-RPE deposits showed a more homogenous autofluorescence distribution and more deposits were larger than 63 µm than in control eyes. Conclusions: Ex vivo fluorescence imaging of sub-RPE deposits in cross-sections enables the separation of their autofluorescence from that of over- or underlying structures. Our analysis showed considerable variability of sub-RPE deposit lifetimes but not spectra. This indicates that sub-RPE deposits either consist of a variety of different fluorophores or expose the same fluorophores to different microenvironments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。