MSC-derived cytokines repair radiation-induced intra-villi microvascular injury

MSC 衍生的细胞因子修复辐射引起的绒毛内微血管损伤

阅读:6
作者:Peng-Yu Chang, Bo-Yin Zhang, Shuang Cui, Chao Qu, Li-Hong Shao, Tian-Kai Xu, Ya-Qin Qu, Li-Hua Dong, Jin Wang

Abstract

Microvascular injury initiates the pathogenesis of radiation enteropathy. As previously demonstrated, the secretome from mesenchymal stem cells contains various angiogenic cytokines that exhibited therapeutic potential for ischemic lesions. As such, the present study aimed to investigate whether cytokines derived from mesenchymal stem cells can repair endothelial injuries from irradiated intestine. Here, serum-free medium was conditioned by human adipose-derived mesenchymal stem cells, and we found that there were several angiogenic cytokines in the medium, including IL-8, angiogenin, HGF and VEGF. This medium promoted the formation of tubules between human umbilical cord vein endothelial cells and protected these cells against radiation-induced apoptosis in vitro. Likewise, our in vivo results revealed that repeated injections of mesenchymal stem cell-conditioned medium could accelerate the recovery of irradiated mice by reducing the serum levels of pro-inflammatory cytokines, including IL-1α, IL-6 and TNF-α, and promoting intra-villi angiogenesis. Herein, intervention by conditioned medium could increase the number of circulating endothelial progenitors, whereas neutralizing SDF-1α and/or inhibiting PI3K would hamper the recruitment of endothelial progenitors to the injured sites. Such results suggested that SDF-1α and PI3K-mediated phosphorylation were required for intra-villi angiogenesis. To illustrate this, we found that conditioned medium enabled endothelial cells to increase intracellular levels of phosphorylated Akt Ser473, both under irradiated and steady state conditions, and to up-regulate the expression of the CXCR4 and CXCR7 genes. Collectively, the present results revealed the therapeutic effects of mesenchymal stem cell-derived cytokines on microvascular injury of irradiated intestine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。