Mechanisms of KGF mediated signaling in pancreatic duct cell proliferation and differentiation

KGF介导信号在胰腺导管细胞增殖和分化中的机制

阅读:7
作者:Benjamin Uzan, Florence Figeac, Bernard Portha, Jamileh Movassat

Background

Keratinocyte growth factor (KGF; palifermin) is a growth factor with a high degree of specificity for epithelial cells. KGF is an important effector of epithelial growth and tissue homeostasis in various organs including the pancreas. Here we investigated the intracellular signaling pathways involved in the mediation of pancreatic ductal cell proliferation and differentiation induced by exogenous KGF during beta-cell regeneration in diabetic rat. Methodology and

Conclusion

Here we show that KGF promotes beta-cell regeneration by stimulating duct cell proliferation in vivo. Moreover, we demonstrated for the first time that KGF directly induces the expression of PDX1 in some ductal cells thus inducing beta-cell neogenesis. We further explored the molecular mechanisms involved in these processes and showed that the effects of KGF on duct cell proliferation are mediated by the MEK-ERK1/2 pathway, while the KGF-induced cell differentiation is mediated by the PI3K/AKT pathway. These findings might have important implications for the in vivo induction of duct-to-beta cell neogenesis in patients with beta-cell deficiency.

Results

In vitro and in vivo duct cell proliferation was measured by BrdU incorporation assay. The implication of MAPK-ERK1/2 in the mediation of KGF-induced cell proliferation was determined by inactivation of this pathway, using the pharmacological inhibitor or antisense morpholino-oligonucleotides against MEK1. In vivo KGF-induced duct cell differentiation was assessed by the immunolocalization of PDX1 and Glut2 in ductal cells and the implication of PI3K/AKT in this process was investigated. We showed that KGF exerted a potent mitogenic effect on ductal cells. Both in vitro and in vivo, its effect on cell proliferation was mediated through the activation of ERK1/2 as evidenced by the abolition of duct cell proliferation in the context of MEK/ERK inactivation. In vivo, KGF treatment triggered ductal cell differentiation as revealed by the expression of PDX1 and Glut2 in a subpopulation of ductal cells via a PI3K-dependent mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。