Method for simultaneous tracking of thousands of unlabeled cells within a transparent 3D matrix

在透明三维矩阵内同时追踪数千个未标记细胞的方法

阅读:5
作者:Falk Nette, Ana Cristina Guerra de Souza, Tamás Laskay, Mareike Ohms, Daniel Dömer, Daniel Drömann, Daniel Hans Rapoport

Abstract

Three-dimensional tracking of cells is one of the most powerful methods to investigate multicellular phenomena, such as ontogenesis, tumor formation or wound healing. However, 3D tracking in a biological environment usually requires fluorescent labeling of the cells and elaborate equipment, such as automated light sheet or confocal microscopy. Here we present a simple method for 3D tracking large numbers of unlabeled cells in a collagen matrix. Using a small lensless imaging setup, consisting of an LED and a photo sensor only, we were able to simultaneously track ~3000 human neutrophil granulocytes in a collagen droplet within an unusually large field of view (>50 mm2) at a time resolution of 4 seconds and a spatial resolution of ~1.5 μm in xy- and ~30 μm in z-direction. The setup, which is small enough to fit into any conventional incubator, was used to investigate chemotaxis towards interleukin-8 (IL-8 or CXCL8) and N-formylmethionyl-leucyl-phenylalanine (fMLP). The influence of varying stiffness and pore size of the embedding collagen matrix could also be quantified. Furthermore, we demonstrate our setup to be capable of telling apart healthy neutrophils from those where a condition of inflammation was (I) induced by exposure to lipopolysaccharide (LPS) and (II) caused by a pre-existing asthma condition. Over the course of our experiments we have tracked more than 420.000 cells. The large cell numbers increase statistical relevance to not only quantify cellular behavior in research, but to make it suitable for future diagnostic applications, too.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。