Glial Cell Responses and Gene Expression Dynamics in Retinas of Treated and Untreated RPE65 Mutant Dogs

接受治疗和未接受治疗的 RPE65 突变犬的视网膜中的神经胶质细胞反应和基因表达动态

阅读:9
作者:Tatyana Appelbaum, Evelyn Santana, David A Smith, William A Beltran, Gustavo D Aguirre

Conclusions

Gene expression data suggest a shift from pro-degenerative mechanisms in middle-aged mutant retinas to more compensatory mechanisms in preserved retinal regions at advanced stages, despite ongoing degeneration. Such shift, potentially attributed to a number of surviving resilient cells, may influence disease patterns and treatment outcomes.

Methods

Immunohistochemistry utilizing cell-specific markers and reverse transcription-quantitative PCR (RT-qPCR) analysis were conducted on archival retinal sections from normal and RPE65 mutant dogs.

Purpose

The long-term evaluation of RPE65 gene augmentation initiated in middle-aged RPE65 mutant dogs previously uncovered notable inter-animal and intra-retinal variations in treatment efficacy. The study aims to gain deeper insights into the status of mutant retinas and assess the treatment impact.

Results

Untreated middle-aged mutant retinas exhibited marked downregulation in the majority of 20 examined genes associated with key retinal pathways. These changes were accompanied by a moderate increase in microglia numbers, altered expression patterns of glial-neuronal transmitter recycling proteins, and gliotic responses in Müller glia. Analysis of advanced-aged mutant dogs revealed mild outer nuclear layer loss in the treated eye compared to moderate loss in the corresponding retinal regions of the untreated control eye. However, persistent Müller glial stress response along with photoreceptor synapse loss were evident in both treated and untreated eyes. Photoreceptor synaptic remodeling, infrequent in treated regions, was observed in all untreated advanced-aged retinas, accompanied by a progressive increase in microglial cells indicative of ongoing inflammation. Interestingly, about half of the examined genes showed similar expression levels between treated and untreated advanced-aged mutant retinas, with some reaching normal levels. Conclusions: Gene expression data suggest a shift from pro-degenerative mechanisms in middle-aged mutant retinas to more compensatory mechanisms in preserved retinal regions at advanced stages, despite ongoing degeneration. Such shift, potentially attributed to a number of surviving resilient cells, may influence disease patterns and treatment outcomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。