Role of cation structure in the phytotoxicity of ionic liquids: growth inhibition and oxidative stress in spring barley and common radish

阳离子结构在离子液体植物毒性中的作用:春大麦和萝卜的生长抑制和氧化应激

阅读:9
作者:Robert Biczak, Barbara Pawłowska, Arkadiusz Telesiński, Janusz Kapuśniak

Abstract

The present study determines the influence of three ionic liquids (ILs) containing cations with diversified structure on the growth and development of spring barley seedlings and common radish leaves. Increasing amounts of 1-butyl-1-methylpyrrolidinium hexafluorophosphate [Pyrrol][PF6], 1-butyl-1-methylpiperidinium hexafluorophosphate [Piper][PF6], and 1-butyl-4-methylpyridinium hexafluorophosphate [Pyrid][PF6] were added to the soil on which both plants were cultivated. The results of this studies showed that the applied ILs were highly toxic for plants, demonstrated by the inhibition of length of plant shoots and roots, decrease of fresh mass, and increase of dry weight content. Common radish turned out to be the plant with higher resistance to the used ILs. The differences in the cation structure did not influence phytotoxity of ILs for spring barley. Furthermore, all ILs led to a decrease of photosynthetic pigments, which was directly followed by decreased primary production in plants. Oxidative stress in plants occurred due to the presence of ILs in the soil, which was demonstrated by the increase of malondialdehyde (MDA) content, changes in the H2O2 level, and antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). The changes in the chlorophyll contents and the increase of POD activity turned out to be the most significant oxidative stress biomarkers in spring barley and common radish. Both spring barley and radish exposed to ILs accumulated a large amount of fluoride ion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。