Three-dimensional molecular imaging with photothermal optical coherence tomography

利用光热光学相干断层扫描进行三维分子成像

阅读:3
作者:Melissa C Skala, Matthew J Crow, Adam Wax, Joseph A Izatt

Abstract

Optical coherence tomography (OCT) is a three-dimensional optical imaging technique that has been successfully implemented in ophthalmology for imaging the human retina, and in studying animal models of disease. OCT can nondestructively visualize structural features in tissue at cellular-level resolution, and can exploit contrast agents to achieve molecular contrast. Photothermal OCT relies on the heat-producing capabilities of antibody-conjugated gold nanoparticles to achieve molecular contrast. A pump laser at the nanoparticle resonance wavelength is used to heat the nanoparticles in the sample, and the resulting changes in the index of refraction around the nanoparticles are detected by phase-sensitive OCT. Lock-in detection of the pump beam amplitude-modulated frequency and the detector frequency allow for high-sensitivity images of molecular targets. This approach is attractive for nondestructive three-dimensional molecular imaging deep (approximately 2 mm) within biological samples. The protocols described here achieve a sensitivity of 14 parts per million (weight/weight) nanoparticles in the sample, which is sufficient to differentiate EGFR (epidermal growth factor receptor)-overexpressing cells from minimally expressing cells in three-dimensional cell constructs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。