Development of three-dimensional articular cartilage construct using silica nano-patterned substrate

利用二氧化硅纳米图案化基底开发三维关节软骨结构

阅读:6
作者:In-Su Park, Ye Ji Choi, Hyo-Sop Kim, Sang-Hyug Park, Byung Hyune Choi, Jae-Ho Kim, Bo Ram Song, Byoung-Hyun Min

Abstract

Current strategies for cartilage cell therapy are mostly based on the use of autologous chondrocytes. However, these cells have limitations of a small number of cells available and of low chondrogenic ability, respectively. Many studies now suggest that fetal stem cells are more plastic than adult stem cells and can therefore more efficiently differentiate into target tissues. This study introduces, efficiency chondrogenic differentiation of fetal cartilage-derived progenitor cells (FCPCs) to adult cells can be achieved using a three-dimensional (3D) spheroid culture method based on silica nanopatterning techniques. In evaluating the issue of silica nano-particle size (Diameter of 300, 750, 1200 nm), each particle size was coated into the well of a 6-well tissue culture plate. FCPCs (2 x 105 cells/well in 6-well plate) were seeded in each well with chondrogenic medium. In this study, the 300 nm substrate that formed multi-spheroids and the 1200 nm substrate that showed spreading were due to the cell-cell adhesion force(via N-cadherin) and cell-substrate(via Integrin) force, the 750 nm substrate that formed the mass-aggregation can be interpreted as the result of cell monolayer formation through cell-substrate force followed by cell-cell contact force contraction. We conclude that our 3D spheroid culture system contributes to an optimization for efficient differentiation of FCPC, offers insight into the mechanism of efficient differentiation of engineered 3D culture system, and has promise for wide applications in regeneration medicine and drug discovery fields.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。